Sign-changing critical points from linking type theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign-changing Critical Points from Linking Type Theorems

In this paper, the relationships between sign-changing critical point theorems and the linking type theorems of M. Schechter and the saddle point theorems of P. Rabinowitz are established. The abstract results are applied to the study of the existence of sign-changing solutions for the nonlinear Schrödinger equation −∆u+V (x)u = f(x, u), u ∈ H1(RN ), where f(x, u) is a Carathéodory function. Pr...

متن کامل

Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian

where ⊂Rn (n≥ 2) is a bounded smooth domain, s ∈ (0, 1), (– )s denotes the fractional Laplacian, λ is a real parameter, the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. When λ≤ 0, we prove the existence of a positive solution, a negative solution and a sign-changing solution by combing minimax method with invariant sets of descending flow. Wh...

متن کامل

KKM-type theorems for best proximity points

Let us consider two nonempty subsets A, B of a normed linear space X , and let us denote by 2B the set of all subsets of B. We introduce a new class of multivalued mappings {T : A → 2B}, called R-KKM mappings, which extends the notion of KKM mappings. First, we discuss some sufficient conditions for which the set ∩{T (x) : x ∈ A} is nonempty. Using this nonempty intersection theorem, we attempt...

متن کامل

Multiple Sign-changing Solutions for Kirchhoff Type Problems

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form

متن کامل

On a Liouville-type equation with sign-changing weight

In this paper we study the existence, nonexistence and multiplicity of non-negative solutions for the family of problems −∆u = λ (a(x)e + f(x, u)), u ∈ H 0 (Ω) where Ω is a bounded domain in R2 and λ > 0 is a parameter. The coefficient a(x) is allowed to change sign. The techniques used in the proofs are a combination of upper and lower solutions, the TrudingerMoser inequality and variational m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2006

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-06-03852-9